
Haskell and Category Theory



Structure

● Introduce Haskell
○ Contextualize

○ Language basics

● Language-level categorical constructs
○ Functors

○ Monoids

○ Monads

● Currying

● Haskell’s type system
○ Category Hask



Haskell: Context

● “Conventional” program structure: Imperative
○ Java, C, Python…
○ Describe “how” program does something

○ program is series of steps (control flow)

■ For loops, if/then...

● Alternative: Declarative
○ Functional languages typically declarative

■ Haskell
○ Describe logic but don’t describe control flow

■ Functions, recursion...



Examples: Factorial



Haskell

● Declarative, functional language
○ “what” not “how”

○ Programs are collections of functions not sequences of steps

■ Higher-orderism: functions passed around as parameters/results

● Syntax notes:
○ Function application via space: f r not f(r)

○ Composition via periods: (f . g) x = f (g x)

● Known for mathematical formalism in underlying structure/language tools
○ Built with category theory, not for category theory

● Built from lambda calculus
○ Type theoretic system for specifying computation



Typing in Haskell - a quick, pragmatic view

Data

● Data type: set of values
○ Int: [-2^29...2^29 - 1]

○ String: [a-zA-Z…]*

Functions

● specifies types of function inputs/output (data)
○ Int -> String takes int, returns string

● typechecking: crucial for writing correct software
○ (f . g) x: 

■ is x g’s input type?

■ is g’s result type f’s input type?



Example type signatures

● Function typing: types of parameters, result



Typing cont.

● Typeclasses
○ Groups of types that define specific behavior
○ ex: types in Eq typeclass have to support ‘==’ function

■ tests equality
○ types in Ord typeclass have to support ordinal comparisons

■ <, >, etc
○ Int? String?

● Type variables (generic types)
○ functions that don’t require specific types use variables in place

● Algebraic data types
○ User created

○ associated with powerfully abstract type “groups” via typeclasses



Example: ==



Hask



Hask

● Categorical representation of Haskell’s type system

● Morphism composition: function composition
○ f . g  = \x -> f ( g x )

● Hask(A, B): functions A -> B
○ Extensionally identified

■ I/O pairs same = same function

● Ob(Hask): Haskell types (Int, String, [Int]...)
○ Don’t care about values! 

○ Int -> Int not 2 -> 3



Identities

Identity morphism for A ∈ Hask: 

f :: A -> A

True or false: Since Hask doesn’t care about values, only types, any function A -> A can be 

interpreted as A’s identity morphism in Hask.

False - composition laws violated. Counterexample:

Let A = Int. Consider (+1) :: Int -> Int, (*2) :: Int -> Int.

If (+1) can be interpreted as the identity,  (*2) . (+1) = (+1) . (*2) = (*2)



id

● Identity morphisms in Hask: id function

id :: A -> A

id x = x

● Parametric polymorphism
○ Type variable ‘A’ instead of concrete type: can be any element of Ob(Hask)

○ Too general to serve as identity morphism

● id instantiated with a concrete type (ex. Int -> Int) serves as identity morphism



“Platonic” Hask

● Implementation level details break underlying categorical structure

● Removes implementation problems
○ gives Hask expected attributes/structures

■ Initial objects, terminal objects, products, coproducts
○ makes categoric features behave as their names suggest

■ Functor, Monad typeclasses

● “Platonic” Hask:
○ Category corresponding to subset of haskell

○ Types don’t have “bottom” values

■ anything that makes a program state undefined: non-terminating loops, exceptions…
■ ‘Undefined’
■ Lazy evaluation



Hask: Initial objects

Requirement: a ∈ Hask s.t. ∀b ∈ Hask, ヨ! f :: a -> b

● Real Hask: Empty type can be “undefined” (a bottom value)



Hask: Terminal objects

Requirement: a ∈ Hask s.t. ∀b ∈ Hask, ヨ! g :: b -> a

● (): unit type
○ both a type and a value
○ analogue of singleton set

● again assuming no problems from “undefined”



Hask: Products

Requirement: ∀f :: r -> a, g :: r -> b 

        ヨ! u :: r -> product(a, b) s.t  π
1 

. u = f, π
2
 . u = g

● π
1 

= fst :: (a, b) -> a

● π
2
 = snd :: (a, b) -> b



Hask: Coproducts

Requirement: ∀f :: a -> r, g :: b -> r,  

       ヨ! v :: coproduct(a,b) -> r s.t  (v . i
1
) = f, (v . i

2
) = g



Hask: summary

● Categoric representation of Haskell’s type system
○ Ob(Hask): types

○ Morphisms: functions between types

● (Platonic) Hask is Cartesian closed
○ ‘Undefined’ and other misbehaving constructs removed

○ See online resources for more discussion

Initial object Terminal object Products Coproducts

Hask

Platonic Hask data Empty data () = () data (a,b) = ... data Either a b = Left a | Right b



Currying



Currying

● Currying: a clever trick
○ n-ary function takes one parameter and returns an (n-1)-ary function

○ vectorScalar :: [Int] -> (Int -> [Int])

● Haskell functions all take only one parameter under the hood

● We’ve seen multi-parameter functions:

● Example: ‘+’
○ + :: Int -> Int -> Int

■ + 2 3 = 5
○ + 2 :: Int -> Int

■ (+2) 3 = 5

● Partial application: feeding a parameters to n-ary function returns (n-a)-ary function
○ Create functions on the fly

○ Generically defined top-level functions + partial application implicitly specifies huge range of functions



Currying: a categorical relationship

● All n-ary functions can be represented as chained 1-ary functions
○ Category theory connection?

● Exponential objects: function types are types too
● Left adjoint: product functor, right adjoint: exponentiation functor

● Adjunction

○ let A, B, C ∈ Hask



Categoric Typeclasses



Functor

● Functor: typeclass (group of types)
○ a Functor is a container type that can be mapped over

■ list, tree…



The Functor typeclass in Hask

● Instance T of Functor: endofunctor F on Hask
○ for a ∈ Hask, F a = T a

○ For f : a -> b, F f : T a -> T b



Monoid

● Hask: types and functions between types

● Structure within a type?

● Monoid typeclass
○ set with unit and associative binary operation



Monoid example

● simple monoid: List
○ Unit?

■ mempty = []
○ Binary op?

■ mappend a b = a ++ b



Monads (the sparknotes)

● Category theoretic monad: triple (T, η, μ)

○ T: C → C (functor)

○ η : 1C → T (n. t.)

○ μ : T2 → T (n. t.)

● endofunctor T is m (C is Hask)
● η is return
● μ is join



Summary

● Haskell is an extremely elegant programming language
○ Design guided by category theory

○ Language-level constructs leverage powerful mathematical abstractions

● Resources
○ Learning Haskell

■ GHC - Glasgow Haskell Compiler

■ Learn You A Haskell

○ Category theory in Haskell

■ Bartosz Milewski’s blog

■ Course website

● Most notable language heavily adopting PL theory -> category theory 

connection
○ Type system: Hask

○ Currying adjunction

○ Categoric typeclasses (Functor, Monad…)



Controversy

● “Hask is not a category” - Andrej Bauer

○ Effectively describes how aspects of Haskell break the underlying categoric model

○ “People walk away from Haskell thinking they know some category theory where in fact they have not 

even seen a category yet”

○ “[I am objecting to] The fact that some people find it acceptable to defend broken mathematics on the 

grounds that it is useful. Non-broken mathematics is also useful, as well as correct. Good engineers do 

not rationalize broken math by saying “life is tough”.”

● Is this relevant?

○ Haskell already notorious in CS world for being overly academic

■ CS breaks nice mathematical abstractions all the time

○ Understanding why Hask is not a category (seq, bottom values) takes more understanding of category theory 

than most Haskellers have/than is required for the abstraction to provide valuable insight/structure/rigor to 

their programming

○ “Category theory is a powerful enough substrate that even doing it wrongly adds a lot of utility” -Edward 

Kmett



Questions


